Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes.
نویسندگان
چکیده
The endocrine cells of the rat pancreatic islets of Langerhans, including insulin-producing beta-cells, turn over every 40-50 days by processes of apoptosis and the proliferation and differentiation of new islet cells (neogenesis) from progenitor epithelial cells located in the pancreatic ducts. However, the administration to rats of islet trophic factors such as glucose or glucagon-like peptide 1 for 48 h results in a doubling of islet cell mass, suggesting that islet progenitor cells may reside within the islets themselves. Here we show that rat and human pancreatic islets contain a heretofore unrecognized distinct population of cells that express the neural stem cell-specific marker nestin. Nestin-positive cells within pancreatic islets express neither the hormones insulin, glucagon, somatostatin, or pancreatic polypeptide nor the markers of vascular endothelium or neurons, such as collagen IV and galanin. Focal regions of nestin-positive cells are also identified in large, small, and centrolobular ducts of the rat pancreas. Nestin-positive cells in the islets and in pancreatic ducts are distinct from ductal epithelium because they do not express the ductal marker cytokeratin 19 (CK19). After their isolation, these nestin-positive cells have an unusually extended proliferative capacity when cultured in vitro (approximately 8 months), can be cloned repeatedly, and appear to be multipotential. Upon confluence, they are able to differentiate into cells that express liver and exocrine pancreas markers, such as alpha-fetoprotein and pancreatic amylase, and display a ductal/endocrine phenotype with expression of CK19, neural-specific cell adhesion molecule, insulin, glucagon, and the pancreas/duodenum specific homeodomain transcription factor, IDX-1. We propose that these nestin-positive islet-derived progenitor (NIP) cells are a distinct population of cells that reside within pancreatic islets and may participate in the neogenesis of islet endocrine cells. The NIP cells that also reside in the pancreatic ducts may be contributors to the established location of islet progenitor cells. The identification of NIP cells within the pancreatic islets themselves suggest possibilities for treatment of diabetes, whereby NIP cells isolated from pancreas biopsies could be expanded ex vivo and transplanted into the donor/recipient.
منابع مشابه
Nestin-positive cells in adult pancreas express amylase and endocrine precursor Cells.
The neural precursor cell-specific marker nestin is expressed in fetal and adult pancreas, but its role is not fully understood. Using nestin-enhanced green fluorescent protein (EGFP) transgenic mice and fluorescence activated cell sorter, we characterized nestin-positive cells in adult mice pancreas. EGFP mRNA- and protein-positive cells expressed amylase, a pancreatic exocrine marker. Interes...
متن کاملCharacterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture.
We have reproduced a previously described method for the in vitro generation of endocrine cells in adult human pancreatic tissue culture. The aim of this study was to characterize the nature of pancreatic progenitor cells and to identify the factors necessary for their differentiation in this model. During monolayer expansion, two types of cells proliferated sequentially; first cytokeratin 19 (...
متن کاملNestin expression in pancreatic exocrine cell lineages
Expression of nestin has been suggested to be a characteristic of pancreatic islet stem cells. To determine whether nestin is indeed expressed in such putative cells during embryonic development, or in the adult pancreas after injury, we performed a cell lineage analysis using two independent lines of transgenic mice encoding Cre recombinase under the control of rat nestin cis-regulatory sequen...
متن کاملMesenchymal Stem Cells Derived from Human Exocrine Pancreas Spontaneously Express Pancreas Progenitor-Cell Markers in a Cell-Passage-Dependent Manner
Mesenchymal stem cells (MSCs) derived from bone marrow, adipose tissue, and most connective tissues have been recognized as promising sources for cell-based therapies. MSCs have also been detected in human pancreatic tissue, including endocrine and exocrine cells. These adult human pancreas-derived MSCs have generated a great deal of interest owing to their potential use in the differentiation ...
متن کاملتمایز بنیاختههای جنینی انسان به سلولهای مولد انسولین
Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 50 3 شماره
صفحات -
تاریخ انتشار 2001